博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
10年ACL,A Unified Graph Model for Sentence-based Opinion Retrieval
阅读量:4973 次
发布时间:2019-06-12

本文共 1116 字,大约阅读时间需要 3 分钟。

论文 A Unified Graph Model for Sentence-based Opinion Retrieval (10 ACL, Binyang Li, Lanjun Zhou)

文章的核心思想是提出了一种基于topic-sentiment word pair的结构进行句子级情感检索(个人理解其实就是评价搭配用到了情感检索上)。可以挖掘句内的target和opinion组成的pair,对于句间可以挖掘针对同一topic的不同opinion;最终使用一个无向图将两种信息融合起来。

Introduction + Motivation(值得学习)

以往的情感检索大多是2-stage的方法。第一步是计算文档性分值,如tf-idf;第二步是计算情感分值(可以通过SVM分类器或者通过带权重的情感词典);最终将相关性分值和情感分值结合(Scoredoc = Scorerel + Scoreop),并对文档进行重排序。作者指出以往2-stage方法中大多使用bag-of-words表示文档,忽略了上下文信息,并指出句子中包含的情感可能并不是针对当前topic的;此外,当前并没有一种方法可以挖掘针对同一topic的不同opinion。

使用资源

这里用到了两个词典,分别是情感词词典Vo和主题词词典Vt。

Vo结合了3个已有的情感词典资源。

Vt使用两种方法生成,一种是基于词典的方法,即用Wikipedia进行同义词和词频统计扩充,wiki返回页中前k个频率最高的词条;另一种是基于伪相关反馈,即基于web的方法,针对一个query在前n个返回文档中取前m个主题词。

图模型(核心)

对于每个情感词,找与其最近的搭配,并且用距离来度量这个搭配的紧密程度。同时,一个句子只抽取一个搭配对(为什么必须要这么限制呢??),并且是间距最小的搭配对。如果一个句子不包含搭配对,就认为是没有情感。

HITS模型

总体来说,HITS模型是一个二部图,图的两层分别为Hubs和Authority,在文章中target-opinion组成的pair作为Hubs,文档Doc作为Authorities,每个Doc由多个sentence组成;若一个pair出现在doc中,则对应pair和doc之间连接一条边。

每一条边的权重是由相关性分值和情感分值结合而成的,通过迭代计算直至整个图模型平衡。并按照Authority的分值对doc进行排序。

Related Work看的不是很仔细,读着有点迷惑~~~待再细读

转载于:https://www.cnblogs.com/darry/archive/2012/02/01/2334280.html

你可能感兴趣的文章
Edit控件显示多行文字
查看>>
JS第二周
查看>>
dataTable.NET的search box每輸入一個字母進行一次檢索的問題
查看>>
Python 文件处理
查看>>
邻接表详解
查看>>
迭代dict的value
查看>>
eclipse package,source folder,folder区别及相互转换
查看>>
Py 可能是最全面的 python 字符串拼接总结(带注释版)
查看>>
《Java程序设计实验》 软件工程18-1,3 OO实验2
查看>>
【Herding HDU - 4709 】【数学(利用叉乘计算三角形面积)】
查看>>
OPENSSL使用方法
查看>>
接口操作XML
查看>>
idhttp访问DATASNAP有密码验证的中间件
查看>>
libmidas.so.2
查看>>
开发WINDOWS服务程序
查看>>
httpencode编码
查看>>
cross socket和msgpack的数据序列和还原
查看>>
解决跨操作系统平台JSON中文乱码问题
查看>>
DELPHI搭建centos开发环境
查看>>
IdHTTPServer允许跨域访问
查看>>